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ABSTRACT: The potential application of infrared and Raman spectroscopies was explored as rapid and nondestructive tools for
the identification of juvenile black seabream samples intoxicated by heavy metals (Zn, Cu, and Cd). Discrimination models were
established on the basis of the infrared and Raman spectral data using three calibration methods, namely, partial least-squares
discriminant analysis, least-squares support vector machines, and random forest. The combination of two spectroscopies was
studied, in which three combination strategies were proposed and compared. Discrimination models achieved overall correct
discriminations of 100% for identifying the fish intoxicated by one heavy metal or the heavy metal mixture. When samples
intoxicated by different heavy metals were analyzed together, the discrimination accuracy remained >90%. Results confirmed the
possibility of developing fast and reliable systems for the identification of juvenile black seabream intoxicated by heavy metals
based on infrared and Raman spectroscopies.
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■ INTRODUCTION

Heavy metal pollution is a serious environmental threat all
around the world, raising particular concerns about the
potential degradation of the ecosystems and their associated
biota. Fish is widely consumed around the world as an excellent
source of nutrients. However, fish is also a source of heavy
metals. Similar to others, the aquatic environment is
continuously being contaminated with discharges of heavy
metals in recent years. Fish accumulates heavy metals directly
through the water, indirectly through ingested food, and
nondietary routes such as uptake through absorbing epithelia
(i.e., the gill).1 Some metals in fish tissues may be readily
excreted, whereas other metals may alter the biochemical
composition of tissues.2 Being at the top of the aquatic food
chain, fish accumulate much more heavy metals than other
aquatic biota. When the accumulation of heavy metals in fish
organs reaches a certain level, fish organs become highly toxic.
Ingestion of fish with large amounts of heavy metals would
cause serious health hazards to humans. For these reasons, the
identification of fish intoxicated by heavy metals is extremely
important to human health.
Conventional methods for determination of heavy metals

normally include flame atomic absorption spectrometry (AAS),
graphite furnace atomic absorption spectrometry (GFAAS),
inductively coupled plasma atomic emission spectroscopy
(ICP-AES), and inductively coupled plasma mass spectrometry
(ICP-MS).3 However, these methods are expensive, labor-
intensive, tedious, and complex, always take a long time to

analyze, and need a lot of sample preparations. To overcome
these short-comings, there is a need for advanced method-
ologies that can provide rapid, simple, and reliable identi-
fications of fish intoxicated by heavy metals. Moreover, fish
have also been widely regarded as bioindicators for monitoring
toxic chemicals in aquatic environments. The possible risk of
heavy metals in aquatic environments could be evaluated on the
basis of the identification of fish intoxicated by heavy metals in
a rapid and simple way.
Recently, vibrational spectroscopy techniques have been

investigated as a potential tool for the automatic quality and
safety evaluation of fish, including infrared spectroscopy4 and
Raman spectroscopy.5 They have the advantages of rapidity,
simplicity, accuracy, low maintenance cost, and minimal sample
preparation. IR represents a direct absorption of light in the
mid-infrared region, which contains useful information of the
fundamental absorptions of hydrogen-containing bonds (O−H,
C−H, N−H, S−H, and P−H).6 Raman spectroscopy is based
on inelastic scattering of light that occurs when laser light
interacts with molecules and condensed matter.7 Both
spectroscopies are nonperturbing rapid techniques that could
detect the vibration information of different functional groups
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of biomolecules such as proteins, lipids, and carbohydrates in
biological tissues and cells.
The major objective of this study was to investigate the

feasibility of infrared and Raman spectroscopies to distinguish
healthy juvenile black seabream (Sparus macrocephalus) and
those intoxicated with heavy metals of zinc (Zn), copper (Cu),
and cadmium (Cd). Cd is a nonessential metal as it is toxic,
even in traces. Cu and Zn are essential metals because they play
an important role in biological systems. However, essential
metals can also produce toxic effects when the metal intake is
excessively elevated.3 To the best of our knowledge, this is the
first study identifying fish intoxicated by heavy metals using
infrared/Raman spectroscopy individually and their combina-
tion in tandem with multivariate analysis. The specific
objectives of the current work were to (1) acquire spectral
data of tested fish samples in infrared (4000−400 cm−1) and
Raman (4000−100 cm−1) regions; (2) establish discrimination
models of samples intoxicated with one heavy metal alone
(design I); (3) establish discrimination models of samples
intoxicated with the mixture of all three heavy metals (design
II); (4) establish discrimination models for samples with all
treatments (intoxicated with one heavy metal and all three
heavy metals, design III); and (5) investigate the discrimination
results of one spectroscopy alone and the spectroscopic
combination.

■ MATERIALS AND METHODS
Test Samples and Chemicals. Juvenile black seabream of length

5 ± 1 cm and weight 2 ± 1 g were procured from Zhejiang
Mariculture Research Institute at Wenzhou, China. The fish samples
were acclimatized to the laboratory condition for about 2 days in
plastic pools with the size of 60.0 cm × 40.0 cm × 30.0 cm. AnalaR
grade Zn(C2O3H5)2, CuSO4·5H2O, and CdC12·2.5H2O were obtained
from Chemical Reagent Co. Ltd., Shanghai, China.
Experimental Study. The acclimated test samples were divided

into five groups, each containing 15 fish. The water used for
maintaining the fish in the fish tanks was seawater, which was prepared
after sedimentation over 24 h and sand filtration and had a pH of 8.05
± 0.1, water temperature of 29.8 ± 0.6 °C, dissolved oxygen of >6 mg/
L, and salinity of 21‰. The water was changed every 24 h throughout
the experiment. The containers were refilled and redosed with the
metal toxicant. There were five fish in each tank. Each group had three
tanks. The test fish in groups I, II, and III were exposed to higher
sublethal concentrations of Zn(C2O3H5)2 (3.045 mg/L), CuSO4·
5H2O (0.53 mg/L), and CdC12·2.5H2O (11.505 mg/L), respectively,
in water (subacute exposure). The concentrations referred to metal.
The test fish from group IV were exposed to the mixture of three
heavy metals at one-third of their sublethal concentrations. Group V
was used as control and reared in seawater without heavy metal
addition. Fish from all groups were reared for 10 days, which was
enough for the accumulation of heavy metals. After the rearing period,
the fish were sacrificed in a refrigerator at the temperature of −4 °C
for 15 min and then used for spectral measurement. The daily diet was
at the level that was about 5−10% of the fish’s body weight.
Spectral Measurements. IR (4000−400 cm−1) spectra were

measured using a Tensor 27 spectrophotometer (Bruker, Germany)
equipped with a Golden Gate Diamond ATR sampling accessory. The
collection of all samples was completed in an airtight collection box.
All samples were scanned 15 times and averaged using OMINIC
software (version 5.2, Inc., Bruker). Raman spectra for 532 nm
excitation were measured using a confocal Raman microscope
(XploRA, Horiba Jobin Yvon, Paris, France). The objective 50×
Olympus BX41microscope (Olympus Optical Co., Ltd., Tokyo, Japan)
was used to focus the laser beam on the samples and to pick up the
backscattered Raman signal. The exposure time was 10 s. The spectra
of the samples were taken at excitation wavelengths of 532 nm using a
power of 0.2 mW (0.1%).

Spectral Preprocessing. Spectral preprocessing is an integral part
of spectral analysis to reduce effects from random noise, length
variation of light path, and light scattering.8 In this work, Savitzky−
Golay first derivative (SG-1st Der) was used to decrease baseline
effects in spectra and resolve nearby peaks. Besides, there were three
preprocessing strategies used for the combination of infrared and
Raman spectra. The first one simply combined the spectral data of
infrared spectroscopy and Raman spectroscopy into one matrix
(strategy I). The second strategy first executed mean normalization on
infrared spectra and Raman spectra, respectively, and then combined
the normalized infrared and Raman spectra together (strategy II). In
the process of mean normalization, the areas below the spectra are
made equal. The third strategy further applied the SG-1st Der on the
data processed by the strategy II (strategy III). The performances of
these three strategies were compared to determine the best spectral
combination.

Spectral Calibration. Discrimination models were then estab-
lished on the basis of the preprocessed data or the original spectra by
employing three calibration methods, namely, partial least-squares
discriminant analysis (PLS-DA), least-squares support vector machines
(LS-SVM), and random forest (RF). PLS-DA is the discrimination
version of partial least-squares regression (PLSR). As a bilinear
modeling technique, PLSR extracts a set of orthogonal factors called
latent variables (LVs) and explores the optimal function by minimizing
the error of sum squares, which is typically performed by cross-
validation.9−11 Differing from PLSR that uses the reference values of
the target attribute as the dependent variable, PLS-DA encodes the
dependent variable with dummy variables describing the classes for the
optimum separation of classes.12 After encoding, PLS-DA is
implemented in the usual way of PLSR.

LS-SVM is an optimized version of support vector machines (SVM)
proposed by Suykens and Vandewalle.13 It applies least-squares error
in the training error function.14 LS-SVM employs nonlinear map
function and maps the input features to a high dimensional space, thus
changing the optimal problem into equality constraint condition.15

The minimum output coding was used to encode the integral numbers
into a set of L binary classifiers.12

RF is an ensemble of classification trees with binary divisions to
solve classification problems.16 During the RF calculation, RF uses
bagging or bootstrap aggregating to construct trees from the sample
set, resulting in increasing diversity of the trees. The final classification
is given by aggregating (majority vote or averaging) the vote cast by
each tree for the class of the object. As an ensemble learning algorithm,
RF can be more accurate and robust to noise than single classifiers.17

Model Evaluation. In the process of establishing discrimination
models for designs I and II, there were 15 samples from group V and
15 samples from groups I, II, III, or IV, respectively. Therefore, there
were 30 samples in four sample sets, respectively. The four sample sets
were used for the intoxication analysis of Zn, Cu, Cd, and the mixture.
For each sample set, there were 20 samples (10 samples from each
group) used for calibration and the remaining 10 samples (5 samples
from each group) for prediction. For design III, there were 75 samples
(15 samples × 5 groups) from groups I, II, III, IV, and V, where 50
samples (10 samples from each group) were selected into the
calibration sample matrix (XC) and 25 samples (5 samples from each
group) into the prediction sample matrix (XP). For each group, fish
samples in two tanks were used for the calibration (10 samples), and
the fish samples in the last tank were for prediction (5 samples).
Therefore, the samples used for the prediction were independent from
the samples used for calibration. On the other hand, there were 3525
wavenumber variables in the range of 4000−600 cm−1 for the IR
analysis, 2592 variables in the range of 4000−100 cm−1 for the Raman
analysis, and 6117 variables for the combination of two spectroscopies.
In addition, one column vector (YC) containing the integer numbers of
intoxication status of samples from the calibration set was
concatenated to matrix XC, and the model calibration was executed
based on XC and YC. For the two-class problem (designs I and II), the
integer numbers were set to 0 and 1, representing intoxicated samples
and healthy samples, respectively. For the five-class problem (design
III), the integer numbers were set to 0 and 1−4 representing samples
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intoxicated by Zn, Cu, Cd, and the mixture of three heavy metals and
healthy samples, respectively.
The performance of the discrimination models was evaluated in

terms of sensitivity, specificity, and accuracy for both calibration and
prediction. Sensitivity is the number of positives (intoxicated samples)
correctly classified by the model divided by the number of all positives.
Specificity is defined as the number of negatives (healthy samples)
correctly identified by the model divided by the number of all
negatives. Accuracy is estimated as the number of correctly
distinguished samples divided by the number of all samples. The
threshold for the PLS-DA analysis was set to ±0.5. A sample with the
predicted value within the actual integer number ±0.5 of this sample
was determined as being correctly classified. All computations and
chemometric analyses were operated using “The Unscrambler V9.7”
(CAMOPROCESS AS, Oslo, Norway), and programs self-developed
in Matlab 2011a software (The Mathworks, Inc., Natick, MA, USA).

■ RESULTS AND DISCUSSION

Analysis of Infrared and Raman spectra. Figure 1a
shows the representative IR spectra of the control and
intoxicated samples in the region of 4000−600 cm−1. In
general, the IR spectrum of fish was quite complex, containing
several peaks contributed from different functional groups. The
detailed wavenumber assignment was performed in three
distinct ranges, namely, 3700−3000 cm−1, 3000−2800 cm−1

(C−H stretching region of −CH2 and −CH3 groups of lipids
and proteins), and 1800−950 cm−1 (fingerprint region).
Specifically, the broad band centered at 3290 cm−1 in the
3700−3000 cm−1 region was assigned to the amide A, mainly
N−H stretching mode of proteins.18,19 In the region between
3000 and 2800 cm−1, the absorptions observed at 2960 and
2874 cm−1 were caused by the CH3 asymmetric and symmetric
stretching groups. The former band is often used to determine
the lipid structure, and the latter is mainly used to monitor
proteins in the biological systems.18−20 Another absorption
band at 2930 cm−1 was assigned to the CH2 asymmetric
stretching of lipids.18,19 The 1800−800 cm−1 region was
generally dominated by the protein amide groups. Two sharp
absorptions at 1640 and 1541 cm−1 were due to amide I and

amide II vibration of structural proteins, respectively. The C
O stretching vibration of protein amide was mainly associated
with the amide I absorption that is sensitive to protein
conformation. The amide II absorption arises from amide N−H
bending vibration (60%) coupled to C−N stretching vibration
(40%) mode of the polypeptide and protein backbone.20 The
absorptions at 1456 and 1394 cm−1 were assigned to the CH2
bending and COO− symmetric stretching modes, respec-
tively.18−20 The bands observed at 1237 cm−1 corresponds to
PO2

− asymmetric stretching of nucleic acids with little
contribution from phospholipids.19 The band observed at
1115 cm−1 was due to symmetric stretching of P−O−C,21 and
the band observed at 1044 cm−1 was assigned to C−O
stretching vibrations in polysaccharides.19

Figure 1b shows the representative Raman spectra of the
control and intoxicated samples in the region of 4000−100
cm−1. Bands in the Raman spectra gave information based on
both the relative amplitudes and frequencies of vibrational
motions on amino acids, proteins, lipids, and nucleic acids. In
general, some peaks from a variety of compounds exhibited
strong Raman scattering, whereas others were weak. The band
assignment of Raman spectra was carried out according to the
literature.5 A water broad Raman band at around 3300 cm−1

with the range of 3100−3500 cm−1 was attributable to O−H
stretching motions. The strong and sharp peak at 2937 cm−1

was assigned to the CH stretching. In the amide I region, the
Raman spectra at 1659 cm−1 with the range of 1650−1661
cm−1 was due to the CO stretching mode of amide I of
protein with high α-helical structure, whereas another peak
centered at 1665 cm−1 with the range of 1661−1670 cm−1 was
attributable to the amide I of protein with β-sheet structures
and a high proportion of random coil or disorder structure.5

The peak at 1659 cm−1 would also be attributable to the CO
stretching modes of fats and oils. Besides, the secondary
structure of protein elucidated by amide I band could also use
the C−C stretching vibrations between 900 and 1060 cm−1. In
detail, α-helices were assigned in 890−945 cm−1 and β-sheets
were located in 1020−1060 cm−1. In the amide III region,

Figure 1. Representative infrared (a, top) and Raman spectra (b, bottom) of the control and heavy metal intoxicated samples of juvenile black
seabream (Sparus macrocephalus).
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vibrational spectroscopy of proteins produced a complex
pattern of bands in the range of 1225−1350 cm−1, where
1230−1245 and 1240−1255 cm−1 showed characteristics of β-
sheet and random coil, respectively. An obvious peak at 1235
cm−1 was assigned to β-sheet of amide III. Raman bands
observed in lipids near 1462, 1447, 1319, and 1263 cm−1 were
assigned to the CH2 scissoring modes, the CC stretching
modes, the CH2 twisting modes, and the CH in-plane
deformation modes. The peak at 1447 cm−1 was also attributed
by the symmetric CH2 and asymmetric CH3 stretching modes
of methylene. Other peaks of C−H deformations could also be
found in the region of 1400−1500 cm−1, such as 1462 and 1420
cm−1. Other Raman characteristics included the COO−
vibrational mode of carboxylate salt bridges (1390 cm−1), the
C−N stretching of proteins (1126 cm−1), the C−H in-plane
bending mode of phenylalanine (1045 cm−1), tyrosine groups
(850 cm−1), and S−S stretching (492 cm−1). In addition,
several bands of tryptophan were found at 544, 559, 750, 875,
1001, 1343, 1360, 1548, and 1586 cm−1.
Figure 1 indicates that both infrared and Raman spectra

contained the spectral information of many chemical molecules
and functional groups of constituents in fish, which was
important to do the heavy metal discrimination. Some previous
analyses have analyzed the structural changes of chemical/
biological components linked with the metal intoxication
caused by Zn, Cu, Cd, and their combinations in fish.22−24

As both the healthy samples (negatives) and intoxicated
samples (positives) were reared under the same conditions, the
spectral differences were mainly caused by the intoxication of
heavy metals. It should be noted that when more samples and/
or more heavy metals were considered, their spectral profiles
would be overlapped. It is difficult to identify an obvious visual
difference of spectra caused by heavy metals. Thus, chemo-
metrics including preprocessing and model calibration were
employed for the discrimination purpose.
Analysis of Samples from Design I. Establishment of

discrimination models for Zn analysis was executed using PLS-
DA, LS-SVM, and RF algorithms based on the data of infrared
spectra, Raman spectra, and their combination. Table S1
(Supporting Information) shows the discrimination results
between healthy samples and those intoxicated by Zn. When
infrared spectra were used for the model establishment, two
models, namely, SG-1st Der-PLS-DA and SG-1st Der-RF,
obtained the best discrimination results with 100% accuracy for
both calibration and prediction. The discrimination results of
Raman spectroscopy were poorer than those of infrared spectra,
in which the prediction accuracy of all samples was <80%. The
specificity of all samples was only 60% for prediction, showing
that it was easy to classify healthy samples into intoxicated
samples. The combination of infrared and Raman spectra did
not improve the identification of Zn. Because of the poor
discrimination results of Raman spectra, the involvement of
Raman spectra and infrared spectra made the discrimination
worse. Only the RF model with strategy I obtained 100%
accuracy for both calibration and prediction. It was found that
the calculation of SG-1st Der increased the discrimination
accuracy in this case, compared with the analysis of the original
spectra. Especially, the RF models established using the original
spectra did not show good results for the analysis of Raman
spectroscopy and spectral combination, but its SG-1st Der
models had similar or better results than PLS-DA and LS-SVM
models.

Analysis of design I (Cu) also considered three calibration
algorithms and three spectral data sets like design I (Zn) did.
Discrimination results between healthy samples and those
intoxicated by Cu are shown in Table S2 (Supporting
Information). Similar to the analysis of design I (Zn), infrared
spectra outperformed Raman spectra in this case. There were
five-sixths models for infrared spectra obtaining 100% accuracy
for both calibration and prediction processes. On the other
hand, discrimination using Raman spectra obtained the best
results with 100% accuracy for calibration and 90% accuracy for
prediction. Also, similar to the analysis of design I (Zn), the
combination of two spectroscopies did not improve the
discrimination performances. Only two models, namely, the
LS-SVM model with strategy III and the RF model with
strategy III, obtained 100% accuracy for both calibration and
prediction.
In the discrimination between healthy samples and those

intoxicated by Cd, the results were mostly acceptable with only
a few models having slightly poorer results (Table S3,
Supporting Information). There were a total of 21 models
established, and 14 of them had 100% accuracy for calibration
and 90% accuracy for prediction. The best discrimination result
was obtained by the SG-1st Der-LS-SVM Raman model,
yielding 100% accuracy for both calibration and prediction. The
combination of two spectroscopies had no significant improve-
ment compared with the use of single spectroscopy.

Analysis of Samples from Design II. Design I considered
only the identification of one heavy metal. In design II, groups
IV and V were considered where group IV included samples
exposed to the mixture of Zn, Cu, and Cd. The results of 21
models established using PLS-DA, LS-SVM, and RF algorithms
based on the data of infrared spectra, Raman spectra, and their
combination are shown in Table S4 (Supporting Information).
When infrared spectra were used for the model establishment,
the PLS-DA models with or without preprocessing obtained the
best discrimination results with 100% for both calibration
accuracy and prediction accuracy. LS-SVM models had little
worse discrimination than the PLS-DA models, in which the
sensitivity of prediction decreased from 100 to 80%. RF models
obtained the worst results with a prediction accuracy of only
70%. When Raman spectra were used for the model
establishment, the best results with 100% accuracy for both
calibration and prediction were obtained by the PLS-DA model
with preprocessing and the LS-SVM model with preprocessing.
Spectral preprocessing was proved to be efficient to improve
the accuracy of the Raman analysis in this case. The result of
the RF model was significantly improved when preprocessing
was considered. The calibration accuracy was increased from 70
to 95%, and the prediction accuracy was increased from 60 to
100%. For the PLSR modeling, the consideration of
preprocessing significantly decreased the number of latent
variables from 16 to 2. In addition, although the infrared
spectroscopy and Raman spectroscopy had good discrim-
inations in some models when two spectroscopies worked
separately, their combinations did not show much improve-
ment. Because the amplitude of Raman spectra was much larger
than that of infrared spectra, when strategy I was adopted, the
infrared spectra had a little contribution. The results of models
based on spectroscopic combination were similar to those
based on Raman spectra. In strategy II, normalization was
conducted to make the amplitudes of infrared and Raman
spectra at the same level. However, strategy II was found to
have poorer results compared with strategy I. To further
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improve the discrimination results, strategy III was evaluated, in
which the SG-1st Der was further carried out on the basis of the
normalized spectra. It was found that strategy III efficiently
combined two spectroscopies for the discrimination, especially
for the LS-SVM and RF modeling.
Analysis of Samples from Design III. To obtain a more

rigorous evaluation of infrared and Raman spectroscopies and
their combination, their performance were determined on the
basis of the combination of all the foregoing designs. The
combined design (design III) included healthy samples,
samples intoxicated with one heavy metal alone in design I,
and samples intoxicated with three heavy metals in design II.
When infrared spectra were used for the analysis, the results
displayed in Table S5 (Supporting Information) show that the
RF models had the best discrimination, followed by the LS-
SVM models, whereas the PLS-DA models failed for the
discrimination. The results of infrared spectra indicated that the
nonlinear information in infrared spectra might be important
for the discrimination, because the nonlinear calibration
methods such as LS-SVM and RF performed better than the
linear calibration method of PLS-DA. On the other hand, the
preprocessing of SG-1st Der was found to be efficient for
improving the discrimination in this case. The prediction
accuracy was improved from 44 to 56%, from 64 to 76%, and
from 80 to 88% for PLS-DA, LS-SVM, and RF methods,
respectively. The best discrimination of infrared spectra was
obtained by the RF model with preprocessing, where the
calibration accuracy reached 90% and the prediction accuracy
was 88%. When Raman spectra were considered, the models
without preprocessing had prediction accuracy of <50%. The
application of SG-1st Der improved the discrimination;
especially the LS-SVM and RF models with preprocessing
had prediction accuracy >70%. The best discrimination of
Raman spectra was obtained by the RF model with
preprocessing, where the accuracy was 76% for both calibration
and prediction. In addition, RF models were found to be more
robust than the other two methods, because there was not
much difference of the RF models between the accuracy of
calibration and prediction. However, other Raman models were
overfitted as they had good discrimination for the calibration
but poor results for the prediction.
When the infrared and Raman spectra were combined

together on the basis of the three strategies, respectively, only
two models, the LS-SVM model and the RF model, both with

the preprocessing of strategy III, had prediction accuracies
>80%. The PLS-DA models had poor discrimination results in
this case, which was similar to the situations of the PLS-DA
models based on either infrared or Raman spectra. Although
the combination based on strategy II failed again as for design
II, strategy III performed well for the LS-SVM model and the
RF model. The best discrimination results for design III were
obtained from the RF model with the preprocessing of strategy
III, where both the calibration and prediction accuracies were
>90%. The detailed discrimination results of this model are
summarized in a confusion matrix presented in Table 1, in
which the diagonal correspond to the correctly classified
samples and the misclassified samples are shown on the off-
diagonal. For the calibration and prediction in Table 1, the sum
of the numbers in each column is the number of samples
examined for each category. In the calibration, all 10 healthy
samples were correctly classified to have the specificity of 100%.
On the other hand, one sample intoxicated by Cd was
misclassified as being intoxicated by all three heavy metals, and
two samples intoxicated by all three heavy metals were
misclassified as being healthy, accounting for 94% of correctly
classified samples in the calibration. In the prediction, spectra of
25 samples were input to the established model. Of the five
healthy samples, one was wrongly identified as being
intoxicated by Cd. Another misclassified sample was the one
intoxicated by all three heavy metals, which was wrongly
identified as being healthy. Moreover, to evaluate the
repeatability of the best discrimination model for design III
(RF model with the preprocessing of strategy III), samples
from a tank different from the previous work for each group
were used as the prediction samples, whereas those from the
remaining two tanks of the group were used as the calibration
samples. The newly established model had the same accuracy
for calibration (94%) and for prediction (92%) as the
previously established model did. The difference between
these two models was that the sensitivity and specificity for
calibration were 95 and 90%, respectively, for the newly
established model. The result shows that the best discrim-
ination model for design III had a good repeatability and
robustness.
Furthermore, of practical and useful interest is the ability of

the method to distinguish between healthy and intoxicated
samples, no matter by which heavy metal the latter is
intoxicated. On this basis, samples from the calibration set for

Table 1. Detailed Results of the RF Model with the Preprocessing of Strategy III for Design III Based on the Combined Data of
Infrared and Raman Spectraa

healthy intoxicated by Zn intoxicated by Cu intoxicated by Cd intoxicated by all three heavy metals

calibration healthy 10 0 0 0 2
intoxicated by Zn 0 10 0 0 0
intoxicated by Cu 0 0 10 0 0
intoxicated by Cd 0 0 0 9 0
intoxicated by all three heavy metals 0 0 0 1 8
accuracy (%) 100 100 100 90 80

prediction healthy 4 0 0 0 1
intoxicated by Zn 0 5 0 0 0
intoxicated by Cu 0 0 5 0 0
intoxicated by Cd 1 0 0 5 0
intoxicated by all three heavy metals 0 0 0 0 4
accuracy (%) 80 100 100 100 80

aColumns, actual classification of samples; rows, classification by model.
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design III were used for building a new RF calibration model
with the preprocessing and strategy III. This model was then
applied to distinguish the intoxication condition of the samples
in the prediction set. The new RF model had a good calibration
accuracy of 98% and a good prediction accuracy of 96%. In
both the calibration and prediction processes, the intoxicated
samples were correctly identified (e.g., with sensitivity of
100%), whereas only one healthy sample was wrongly identified
as being intoxicated. As the misclassification of intoxicated
samples as healthy samples is more serious than classifying
healthy samples as intoxicated samples, the results of the new
RF model were acceptable.
In general, good discriminations with 100% accuracy for both

calibration and prediction were obtained for design I (Zn) and
design I (Cu) by analyzing infrared spectra and for design I
(Cd) and design II by analyzing Raman spectra. The
spectroscopic combination did not show its advantages for
designs I and II, but obtained the best discrimination for design
III, which was much more complicated than other designs.
Therefore, the spectroscopic combination was not required in
this work for two-class problems (designs I and II), but was
suggested for the identification of samples intoxicated by
different heavy metals (design III). On the other hand,
nonlinear calibration methods were found having better
performances for complicated sample sets than linear methods
for the identification of samples intoxicated by different heavy
metals. Although RF did not show a distinct advantage over the
other two calibration methods in designs I and II, it had better
discriminations in design III, especially with the help of
preprocessing. Actually, the spectral preprocessing of SG-first
Der was found to be able to improve the discrimination in
many cases and could keep the discrimination accuracy in other
cases. In addition, it was found that strategy II was not efficient,
as it made the discrimination worse. Strategy III did show some
efficiency in the spectral combination of two spectroscopies,
especially for design III. Strategy I gave results to similar those
of the corresponding Raman model, as the amplitude of Raman
spectra was between 5000 and 30000 and that of infrared
spectra was only between 0 and 1.
The ability of infrared and Raman spectroscopies in

identifying juvenile black seabream intoxicated by heavy metals
lies in their provided spectral information related to the
composition changes caused by the intoxication of heavy
metals. Some works suggested that heavy metals could induce
alteration on the major biochemical constituents such as lipids,
proteins, and nucleic acids, which can be evidenced by infrared
and Raman spectroscopies.22−24 In this work, on the basis of
previous works, the feasibility of infrared and Raman
spectroscopies was evaluated on distinguishing healthy juvenile
black seabream and those with accumulated heavy metals. The
results presented in this work show that component changes
induced by heavy metals in juvenile black seabream could be
reflected by infrared and Raman spectroscopies. The intensity
of infrared and Raman bands suggests the possible involvement
of complex physical and chemical changes caused by the
intoxication of heavy metals. Discrimination models established
using PLS-DA, LS-SVM, and RF were reasonably efficient as
rapid and convenient tools for identifying fish samples polluted
by heavy metals. One hundred percent accuracy was obtained
for identifying heavy metals in two-class problems for designs I
and II, and >90% accuracy was obtained for design III, which
was a combination of designs I and II.

Heavy metals are naturally occurring, but their discharges
into natural ecosystems have increased significantly in the
modern world due to anthropogenic activities, such as mining,
automobiles, electroplating, paints and dye, coal burning,
battery-making industries, and trash incineration. Remediation
of heavy metals poses a different kind of challenge compared
with organic pollutants because of heavy metals’ indestructible
nature through bioremediation and their stable and persistent
existence. Another important factor that contributes to the
deleterious effects of heavy metals as pollutants is their
tendency to accumulate in the environment, especially in the
bottom sediments of aquatic habitats in association with
organic and inorganic matter.25 Heavy metals would cause
potential disease when they accumulate in the body.26 Due to
their toxicity, long persistence, and nonbiodegradable proper-
ties, it is important to identify fish intoxicated by heavy metals
in a rapid and accurate way. The successful output of this work
shows that healthy and intoxicated juvenile black seabream
could be well distinguished, leading to improved safety
assurance of the fish product. This study opens up an attractive
prospect that fish intoxicated by heavy metals could be
identified within seconds as opposed to hours or days. As the
first research on rapid and noninvasive discrimination of
healthy juvenile black seabream and those intoxicated by heavy
metals, the results obtained here are very promising and will
promote more efforts on investigating infrared and Raman
spectroscopies for assessing heavy metal contamination of fish
and other food products. In the next step, quantitative
relationships will be established between the IR and Raman
spectra of intoxicated fish samples and their contained
concentration of heavy metals, the reference values of which
will be measured using traditional methods, those being atomic
absorption spectroscopy, etc.
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